SF

WASTE MANAGEMENT 2020

BRINE AVAILABILITY TEST IN SALT: THMC SIMULATIONS OF A HEATED BOREHOLE IN SALT - 20239

LA-UR-20-21948

SPENT FUEL & WASTE DISPOSITION

<u>Eric Guiltinan</u>¹, Terry Miller¹, Kris Kuhlman², Jonny Rutqvist³, and Philip Stauffer¹

Computational Earth Science Group, Los Alamos National Lab
Sandia National Laboratories
Lawrence Berkeley National Laboratory

BRINE AVAILABILITY TESTS IN SALT (BATS)

Storing heat generating nuclear waste in salt is being investigated at WIPP

IS A SALT REPOSITORY THE ANSWER?

- Salt is an attractive geological medium due to its extremely low permeability, self-sealing ability, and high thermal conductivity.
- However, questions remain regarding brine origin, availability, and chemistry during the heating of salt

Erickson and Dials, RadWaste Solutions, Jan.-Apr., 24-34, 2011.

Fluid inclusions migrating under a thermal gradient - Carter and Hansen, Technophysics, 93, 1983.

WATER SOURCES IN SALT

- Water sources in bedded salt:
 - Intracrystalline (brine inclusions)
 - Intercrystalline (e.g., mobile "pore fluid")
 - Water associated with clay minerals and polyhalite
- Water may be liberated from brine inclusion migration and clay dehydration (above 65°C)

SALT THMC COUPLINGS

- Deformation
- Vapor pressure lowering
- Porosity
- Thermal conductivity
- Permeability
- Capillary pressure
- Water vapor diffusion
- Clay dehydration

F(temperature, stress, time, saturation) *F*(capillary pressure, salinity) *F*(dissolution, precipitation, stress, strain) *F*(temperature, porosity, saturation) *F*(porosity, saturation) *F*(porosity, saturation, temperature) *F*(porosity, saturation, temperature) *F*(temperature) *F*(temperature)

BATS: PHASE 1S (SHAKEDOWN)

Tests Began in July 2018 and were complete in May 2019

PHASE 1S: TEMPERATURE RESULTS

Heater Block

PHASE 1S: FEHM MODEL

Drift View

Highly refined 3D Mesh

20m x 20m x 10m

1,003,995 total elements

PHASE 1S: PRESSURE DISTRIBUTION

Long term simulations used to predict initial reservoir pressure

SHAKEDOWN: HEATER BLOCK

• Heater block makes minimal contact with salt and is buffered by air.

10

Contact with salt

SHAKEDOWN: IR HEATER

260W IR Heater

WATER PRODUCTION

- Dry nitrogen carries out water vapor
- Water mass measured by Drierite mass change

Drierite

Intact Salt permeability:1e-21 m² DRZ permeability: 1e-18 m² Background Pressure: 12 Mpa

2020 Waste Management Symposia

BATS: PHASE 1

Brine Availability Test in Salt at WIPP (BATS) Phase 1

Monitoring brine distribution, inflow, and chemistry from heated salt using geophysical methods and direct liquid & gas sampling.

Heater turned on January 2020

BATS: PHASE 1 BOREHOLE PATTERN

BOREHOLE HEATER TEST CONFIGURATION (FINAL)

BATS: PHASE 1 LAYOUT

2020 Waste Management Symposia

PHASE 1: PRESSURE DISTRIBUTION

- 7 years of open drift
- 5 days of open boreholes

Slice 2 m into the drift face

PHASE 1: TEMPERATURE PREDICTION

2020 Waste Management Symposia

PHASE 1: OTHER OBSERVATIONS

Temperature

-21

ZAXS

XAXE

Days since start: 35

Days since start: 34

Strain

Isotopes

Days since start: 33

-25

2 Axis

0 X Axis

X AxB

QUESTIONS?

https://sfwd.lanl.gov/

SFWD SPENT FUEL & WASTE DISPOSITION