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Canisters spacing 

Background
• Can we make a safety case for storing 

DOE managed high-level nuclear waste 
(HLW) and Spent Nuclear Fuel (SNF) in 
bedded salt?

Image: DOE-CBFO



Slide 5U N C L A S S I F I E D

Carter, J.T., A.J. Luptak, J. Gastelum, C. Stockman, A. Miller. 2012. Fuel Cycle Potential Waste 
Inventory for Disposition. DOE Office of Nuclear Energy Report FCR&D-USED-2010-000031, Rev 5. 

More than 90% of 
DOE managed waste is less than 220W

Background

HLW SNF
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In-Drift Disposal Concept

•Lower cost 

•Easier logistics

•Tighter spacing

DOE/CBFO-12-3485

Hardin et al., FCRD-UFD-
2012-000219

Background
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• Bedded salt has favorable characteristics for heat-
generating waste disposal:
– Self-sealing plastic deformation
– Very low permeability (intact/final)
– High thermal conductivity

• Past heater tests in salt provide data
for model validation
– Possible evidence of heat pipe activity 

around a 130oC heater 

From Brady et al. (2013).

Vapor flux

Condensation

Liquid flux (brine)

Boiling region

Hot

Heat pipe

Background
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New evidence for the heat pipe

Laboratory evidence for a heat pipe in salt 
• Olivella et al. (2011 Transport in Porous Media)

– Small experiment
– Porosity change due to thermal gradient in granular salt

Background
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Canisters spacing 

• Water sources in bedded salt:
– Intracrystalline (brine inclusions)
– Intercrystalline (e.g., mobile “pore

fluid”)
– Water associated with clay minerals

and polyhalite
• Water may be liberated from brine

inclusion migration and clay 
dehydration (above 65oC)

Photo: H. Boukhalfa

Photo: D. Weaver

Background
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Canisters spacing 

Research Objectives

• Use modeling to help design and instrument a field-scale 
experiment for the Salt Defense Disposal Investigations (SDDI).

• Predict moisture, mass redistribution, and temperature
following In-Drift waste disposal in bedded salt.
– New code development required

Research Objectives

D. Weaver
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• FEHM developed at Los Alamos 30+ years 
fehm.lanl.gov

• Used for 150+ peer reviewed articles 
fehm.lanl.gov/pdfs/FEHM_references_list.pdf

• Fully coupled thermal, mechanical, chemical, 
multiphase (gas, water vapor, water, rock)

• Uses LaGriT: Powerful 3-D grid generation tool

Simulator Description 
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Thermo Hydrological Chemical Simulations
Require Coupled Processes with Feedbacks

• Changes in porosity lead to changes in:
– permeability
– thermal conductivity and heat capacity
– vapor diffusion coefficient

• Changes in temperature lead to changes in:
– thermal conductivity
– salt solubility
– water vapor pressure
– brine viscosity
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Water vapor pressure as a function of dissolved salt 
concentration and temperature

The blue vertical 
lines span the 
region of interest 
for most of our 
simulations 
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Salt Specific Algorithms in FEHM for
Thermo Hydrological Chemical Simulations 
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Salt Specific Algorithms in FEHM for
Thermo Hydrological Chemical Simulations 
• Thermal conductivity of salt as a function of 

porosity and temperature
• Salt solubility as a function of temperature
• Precipitation/dissolution of salt
• Water vapor diffusion coefficient as a 

function of pressure, temperature, and 
porosity

• Permeability-porosity relationship for RoM
salt
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2013 Stauffer, P.H., et al., Coupled model for heat and water transport in a high 
level waste repository in salt, FCRD-UFD- 2013-000206 Los Alamos National 
Laboratory Document LA-UR 13-27584
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Clay dehydration algorithm based on laboratory data
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Salt Specific Algorithms in FEHM for
Thermo Hydrological Chemical Simulations 

Mass of water produced at 64oC at node i based on the fraction of clay (fc), 
porosity, density of rock, and volume of the cell:
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Range of parameters used in the simulations

Parameter Natural
Range

Simulated
Range

Backfill saturation 0.01 – 0.09 0.01 – 0.1
Backfill porosity 0.3 - 0.4 0.35
Clay content 0 – 0.15+ 0 – 0.1
Drift air temperature 15 – 30 C 30 C
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2 Reflection boundaries are used to reduce mesh size (1/4 space)

High Resolution Numerical Mesh
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Thermo Hydrological Chemical Simulations 
at the drift scale 

Results

•Time evolution of a hot case (5 x 750W)
•Impact of thermal load 
•Impact of initial backfill saturation
•Impact of clay dehydration 
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Results: Details of the hot case

• Heat load = 5 x 750W 
• 2 year simulation
• Initial saturation 10% (2.5% gravimetric water content)

• Maximum capillary suction = 0.5 Mpa
• Clay fraction = 0.0
• Residual water saturation = 10%
• Initial temperature = 30 C
• Maximum temperature = 150 C

150 C

30 C

105 C

Red and yellow colors are above boiling

Temperature
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SDDI ModelingResults: Time Evolution of a hot case 

Ti
m

ePOROSITY SATURATION TEMPERATURE

16 ft
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Porosity 
changes more 

with 
higher 

heat loads250W 500W

750W
Saturation 
for 750W Time = 2 years

Satini = 10%
Porosity

Porosity Porosity

Results

dry 

More heat pipe 
with higher 
heat loads
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All at 750W
Time = 2 years

Porosity changes 
more with 

higher 
Initial saturation 

in the run of mine 
salt backfill

Satini=1% Satini=2%

Satini=5% Satini=10%

Results

All at 750W
Time = 2 years

More heat pipe in 
a wetter system
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SDDI ModelingResults: Clay Dehydration

Results at 460 days
No clay 10% clay

2nd order 
impact
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Conclusions

• Including water and water vapor in simulations 
leads to:
– Not much change in low energy cases

(less than 250W per canister)
– Heat pipes in some higher energy cases 

(greater than 250W per canister)
§ Lowers temperatures near the canisters
§ Salt mass transfer toward the canisters
§ Increased thermal conductivity near the canisters

Conclusions
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Conclusions

– Heat pipe development is positively correlated with:
§ Initial backfill saturation
§ Backfill capillary suction
§ Water mobility at low saturation
§ Clay content in the backfill 
§ Water movement into the backfill from the 

damaged rock zone

Conclusions
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Future Work

• Experimental validation 
– Heat pipe generation in Run of Mine salt backfill
– Retention characteristics of Run of Mine salt backfill
– Drift scale testing at WIPP

• Inclusion of isotopic tracers in the simulations
• Inclusion of evaporation 

– Barometric pumping
– Pressure flow through the underground

§ Seasonal humidity and pressure differences
§ Bulkhead impacts
§ Damaged rock zone impacts

Future Work



Slide 27U N C L A S S I F I E D

Questions? Questions?
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Extra Slides if Time Permits
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Canisters spacing 

Comparison of 
Thermal only VS Thermal + water + water vapor

Image is zoomed in on three 
of the five heaters

Heat load = 1500W/canister

Time = 730 days after heating 
begins.

Canisters spacing = 1 m.
3-D model domain with red 
access tunnels and green 
backfill.  Intact salt is cyan.

Thermal only 

Thermal + water + water vapor
Isothermal region indicative 
of heat pipe
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thermal only 

Temperature Difference Image
Thermal only – (Thermal + water + water vapor)

Heat load = 1500W/canister  
Time = 730 days after heating begins.

Canisters spacing = 1 m.

Vapor/liquid heat pipe is 44C cooler in the heaters

Thermal only 

Thermal + water + water vapor
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High resolution Thermo Hydrological Chemical
Run of Mine salt covering hot waste packages 
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Boiling near the heaters causes salt to precipitate leading to 
porosity reduction.  Vapor condenses across the boiling 

line leading to dissolution and increased porosity

3x5 m

2-D 
slice

4 cm
mesh
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• Liquid at A
• Vaporizes at B
• Condenses at C
• And D, flows back as 

liquid to A.

Heat pipes lead to isothermal regions where 
phase change is absorbing energy

Generic Heat Pipe Explanation


